

© Copyright Optaros, Inc. 2005. Some Rights Reserved. This work is licensed under a Creative Commons Attribution 2.5 License

TThhee LLiicceennsseess

There are primarily three license types or families that have

arisen historically:

♦ Academic licenses (MIT Athena, Berkeley, and Apache)

♦ Free software licenses (General Public License and the

LGPL)

♦ Mozilla-style licenses (Mozilla, and the IBM licenses)

We will note a few other interesting licenses along the way,

but even these derive from the basic models laid down in

these three groups.

TThhee AAccaaddeemmiicc LLiicceennsseess ((BBeerrkkeelleeyy,, MMIITT,, AAppaacchhee))

During the mid-1980s period, the Computer Science

Research Group at the University of California, Berkeley was

doing a lot of research work on early UNIX systems, and

acted as a hub for the collaborative research community. The

regents of the university developed a simple license for their

work to encourage new research and adoption of the

software. The Berkeley license essentially:

♦ Enables the software user to do anything with the

software, including extending and selling it.

♦ Does not require any derived software be licensed under

the same license or that the changes be published. This

enables “closed” or proprietary products to safely include

such licensed software.

♦ Requires that attribution be given for the work, and

copyrights maintained.

♦ Disclaims any warranties (express or otherwise) just as

proprietary EULA do.

This license style has been referred to as Berkeley-style

licensing. This was also the basic model for the MIT Project

Athena license (used for the X11 windowing technology,

including all the contributions from Hewlett-Packard and

Digital Equipment Corporation).

As we will see, Berkeley-style licensing supports a reciprocity

belief counter to that espoused by the Free Software

Foundation (FSF) – that the software would definitely be

freely distributable, but the reciprocity requirement should be

encouraged in the community and not commanded in the

license.

The Berkeley-style license was also the model used in the

early Apache community in 1995. The original Apache web

server was created out of work developed at the National

Center for Supercomputing Applications, University of Illinois,

and the license reflected the research base and collaborative

development in that community.

In 2004 the Apache 2.0 license was released. It is a

complete rewrite to account for current concerns of software

contributions and patents, and is a richer and more complex

license in its legal structure, but it remains true to the

principles of its history.

Free and Open Source Licenses, Software Development, and Distribution
by Stephen Walli | VP, Open Source Development Strategy

Programmers have been sharing computer programs and source code since we had computers. In the early days it was

often done through professional and user organizations such as DECUS, SHARE, and USENIX. The licenses through which
such sharing happened were as varied as the end user license agreements (EULA) of proprietary software vendors today,
and all such licenses rely on strong intellectual property laws and copyright law.

This sharing of software has reached new heights over the past couple of decades enabled through the ease of sharing
across the Internet. The concepts of “free” and “open source” software have became mainstream and licensing is the
avenue through which the rules of this particular form of sharing software are laid down.

Understanding free and open source (FOSS) licenses is not actually that difficult. A little history and a few pointers can
clarify some of the confusion to enable organizations to make best use of FOSS in their own business contexts. With this
understanding we will take a look at enterprise considerations around FOSS use, whether as an enterprise that wants to use
FOSS in parts of its business infrastructure or a vendor looking for a competitive edge and a new value proposition for its
customers.

Understanding Free and Open Source Software Licenses - 2 of 3

© Copyright 2005. Some Rights Reserved. This work is licensed under a Creative Commons Attribution 2.5 License

FFrreeee SSooffttwwaarree LLiicceennsseess ((GGPPLL,, LLGGPPLL))

In 1985, Richard Stallman created the Free Software

Foundation and his definition of software freedom, where a

program's source code was always available and a user could

always fix and extend the software without restriction. The

General Public License (GPL) laid down this particular sharing

foundation.

♦ If the user distributes the changed software they can

only do so by sharing their changes the same way

through the same license. This is the reciprocity

requirement of the free software definition. This is a

primary difference from the academic class of licenses

that permit derivatives to be re-licensed under other

(possibly closed, proprietary) terms.

♦ If you used any of the GPL-licensed source code in your

own programs, and distribute those programs, the entire

newly derived program including your own source code

becomes subject to the GPL. This is where the concept of

a virus is attached to the GPL.

♦ The GPL disclaims any warranties (express or otherwise)

just as proprietary EULA do.

It is important to note a couple of things here:

♦ The reciprocity requirements are triggered on

distribution of the software, not on using it.

♦ There is nothing that has forced you to expose the

source code to your application. The license contains its

own redress. You can always withdraw the software

distribution. (If you were a commercial software

organization, this might still prove onerous, and so one

does need to pay attention when working with GPL

software that will be distributed.)

The Lesser GPL (LGPL) was developed later to account for

software libraries. Many that would share their software

subroutine libraries under the GPL didn't necessarily want to

force the recipient to have to share anything other than their

changes to the library. The way the GPL was written would

unfortunately force the entire software (libraries and the

program using the libraries) to come under the GPL. The

LGPL enabled a library to be licensed which did not require

the entire application to be licensed under the same license

(and so enabling it to remain closed), while still requiring

changes to the library itself to be published under the LGPL if

distributed.

Many of the most important FOSS programs of the past 20

years are licensed under the GPL, including the Linux

operating system, the GCC compiler suite, the MySQL

database engine, and JBOSS application server. Many

vendors (including software vendors) use and develop

software licensed under the GPL.

All through much of the rest of the 1980s and 1990s

everyone followed one of these two models with simple

variations around such clauses as jurisdiction.

TThhee MMoozziillllaa LLiicceennssee

Before we cover the Mozilla license, a small detour is in

order. When the Perl language hit the scene, Larry Wall

created the Artistic License. The Artistic license was intended

to maintain the open aspect of the Artistic licensed code,

while enabling innovation around the core project to be

licensed as appropriate. It tried to find a balance between

the hard line sharing required by the GPL and the complete

freedom of the academic licenses. It is a popular license,

though some consider it legally ambiguous in places.

In the late 1990s, Netscape published the source code to

their browser and began to build a community of developers

around it. This project was called the Mozilla project, and the

license created was the Mozilla Public License (MPL). This is

one of the first licenses created by a corporation, and that

heritage shows through in its legal structure and depth

compared to FOSS licenses prior to that point. It had similar

goals to the Artistic License. Essentially, the MPL:

♦ Requires derivatives of the MPL work that are the

original work plus contributions to be licensed under the

MPL, thus creating the reciprocity of the GPL for the core

project.

♦ Enables MPL licensed works to be combined with other

software and re-licensed into a “Larger Work.” This

enables the development of possibly closed proprietary

software similar to the academic licenses.

♦ Discusses patent rights relevant to the licensed work.

♦ Disclaims any warranties (express or otherwise) just as

proprietary EULA do.

There has been a proliferation of open source software

licenses based on the Mozilla license, because other

companies wishing to develop collaborative software

communities as a business tool invariably want to change the

jurisdiction clause and define language around what patent

concerns they may or may not have. The language of the

Mozilla Public License is very Mozilla project centric.

One can see a certain lineage to the Mozilla license in the

development of IBM licenses, from the original IBM Public

License through the Common Public License to the newest

Eclipse Public License that are used around the Eclipse

project.

Understanding Free and Open Source Software Licenses - 3 of 3

© Copyright 2005. Some Rights Reserved. This work is licensed under a Creative Commons Attribution 2.5 License

EEnntteerrpprriissee CCoonnssiiddeerraattiioonnss

For the most part, enterprises using free and open source

software should have few concerns about licensing for the

following key reasons:

♦ All licenses essentially allow the software to be run

(binary form) without restriction

♦ Under all licenses the source code can be modified

without restriction if the resulting software is being used

internally

♦ The GPL and Mozilla family of licenses place

requirements for re-licensing and publication on the user

only if they distribute the software. This would only

have implications on an enterprise if they plan to

distribute the software to their customers. (Software

development and distribution concerns are discussed in

“Free and Open Source Licenses, Software Development,

and Distribution”.)

If you're buying packaged free or open source software or a

system that contains such software (e.g. Red Hat Advanced

Server, or HP/UX), then the Red Hat or HP EULA is the

primary concern, and all other third party license concerns

are left to the vendor.

When using open source packages, such as the MySQL

database engine, JBOSS application server, or any of the

Java frameworks that are FOSS licensed, the license enables

free deployment and use and there are no concerns within an

enterprise – the enterprise isn't developing software

derivatives that they distribute.

Indeed, the ability to freely copy open source software and

deploy as much as is needed within an enterprise means the

historical (and sometimes litigious) problem of counting users

or processors goes away, along with the auditing costs

involved. This ability to freely deploy also frees up the

architecture of solutions to problems. For example, there was

a time when you designed the solution architecture around

reducing the number of very expensive licenses one required

for application server middleware, and database access. With

the ability to deploy as many application servers as is

required and distribute the database across systems equally

freely because of a lack of per system license fees, the

solution can be designed and built to real requirements. The

solution can grow more organically to meet the needs of the

enterprise at marginal additional costs. The issues then fall

back to concerns about support and maintenance.

GGeettttiinngg MMoorree IInnffoorrmmaattiioonn

The following web sites and books are excellent sources of

additional information on free and open source software

licensing.

Web sites:

♦ The Open Source Definition

(http://www.opensource.org/docs/definition.php)

♦ The Free Software Foundation definition of free software

(http://www.fsf.org/licensing/essays/free-sw.html)

♦ Open Source Initiative approved licenses referenced in

this document can all be found at the following web site:

http://www.opensource.org/licenses/

Books:

♦ Lawrence Rosen, Open Source Licensing, Prentice Hall

PTR, Upper Saddle River, NJ, 2004 (ISBN 0-13-148787-

6)

♦ Andrew M. St. Laurent, Open Source and Free Software

Licensing, O'Reilly Media Inc., Sebastopol, CA, 2004,

(ISBN 0-596-00581-4)

ABOUT OPTAROS http://www.optaros.com
Optaros is a consulting and systems integration firm that helps

enterprises solve IT business problems by providing services and

solutions that maximize the benefits of open source software. Bringing

together experts in creating enterprise IT solutions and experts in the

power of open source, Optaros plans and builds business systems that

give you better value today and increased control in the future.

CONTACT
Brian Otis
VP, Sales and Partnerships
email: botis@optaros.com
phone: (617) 227-1855 x110

CREATIVE COMMONS LICENSE

This work is licensed under a Creative Commons Attribution 2.5 License

